The new reference tables for physics from the North Carolina Department of Public Instruction give equations for velocity and acceleration where “distance” is represented by the symbol x. That seems to be a trend among some textbook authors.

There are several symbols that have and are still used to represent distance. The symbol x is one of them. Some textbook authors also represent distance by the symbols s and r. In my day, when sitting under an apple tree was a required physics lab, we used s for distance, with r a close second.

The symbol r makes sense for a distance that happens to be a radius, or for a distance in torque problems where r is the length of the torque arm. Therefore, when rotation or a radius might be involved, r is often used for distance. But what about the symbol s for distance?

The symbol s comes to us from the Latin *spatium*, which means … wait for it … **distance**. It is the Latin source for our words like “spatial” and even “space.” In fact, it exists today as a medical term. To a doctor, a *spatium* is a space or cavity within the body. Therefore, *spatium* is our source for the letter s denoting distance. It makes perfect sense now.

What about using d for distance? You see it in simple equations in use in grade school or elementary science courses where the students are not likely to end up in a calculus class. In cases like that d makes some simple sense. But in calculus, the symbol d is used to denote the derivative as in dy/dx. Remember, calculus was invented by Isaac Newton in order to do physics. You won’t see d used for distance in a physics class.

The symbol x is emblazoned on our brains as the symbol for “the unknown”. Nobody watched Mulder and Scully because the X-Files were all about the “distance-files”. The symbol x also suggests something on the x-axis or the x-component of a vector.

Sorry, I just can’t get used to using x for distance. For me, Δs will be my preferred way of representing the distance between two point.

Therefore, expect to see….

\[
\begin{align*}
 v & = \Delta s / \Delta t \\
 \Delta s & = v_i \Delta t + \frac{1}{2} a \Delta t^2 \\
 v_f^2 & = v_i^2 + 2a \Delta s
\end{align*}
\]